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Summary: The main aim of this study is to uncover the main pharmacophoric features of a series of indole 

glyoxamide derivatives which are known as HIV-1 attachment inhibitors and to estimate the biological 

activity to develop a 4D-QSAR model by using the EC-GA method. 

Conformational analysis and quantum mechanical calculations were accomplished by using the Hartree Fock 

method with the 3-21G basis set. Based on the data produced from the quantum chemical calculations, the 

electron conformational matrices of congruity (ECMC)s, as the 3D- arrangement of electronic and geometric 

properties, were generated by the EMRE program. An individual ECMC was formed for each conformer of 

each indole glyoxamide derivative in the data set. Conformational flexibility was considered for each 

compound. Totally 1510 ECMCs were produced by EMRE software to be used in the comparison process. 

By analogizing the ECMCs in a predetermined tolerance value, the subset of common features matching all 

active compounds but not matching the low activity compounds was determined. The final ECSA was 

obtained as a set of nine atoms including predominantly hydrogen bond donors, hydrogen bond acceptors 

and lipophilic units. Key elements are mainly placed in indole nitrogen, carbonyl groups and piperazine ring. 

In the bioactivity prediction and variable selection, the genetic algorithm and non-linear least square 

techniques were employed. The obtained models were internally and externally validated by the leave-one-

out cross-validation method. The resulting 4D QSAR EC-GA models were compared with the other methods 

and the best model with the high prediction ability was defined according to R2
training=, R2

test =0.8 cross-

validatedated q2 =0.860, q2
ext1 = 0.850 and q2

ext1 = 0.850 values. 

Attained EC-GA model provides insight into the vital interaction between indole glyoxamide derivatives and 

the target protein. EC-GA models can be utilized as an effective and confidential tool in the design of more 

potent indole glyoxamide derivatives. 
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Introduction 

 

The human immunodeficiency virus (HIV) is 

an initiative factor of acquired immunodeficiency 
syndrome (AIDS) which is one of the most life-

threatening global health problems. When HIV enters the 

human body, HIV targets a particular type of white blood 

cells named CD4+ T-cells in the immune system [1] and 

progressively weakens the defense system by 

eventuating in CD4 cell depletion [2]. This situation 

enables to AIDS and its sensibility to other opportunistic 

infections. 

 

The World Health Organization reported that 

there are 680000 HIV-related deaths in 2020 and globally 
37.7 million people are living with HIV including all ages 

and still being an international health problem [3]. On the 

other hand, the transmission of HIV became a 

controllable long-lasting health problem by the growing 

availability and accessibility to the current HIV 

repression procedures and therapies. 

 

Nowadays, in an effort to manage the HIV 

infection, the effective treatment of HIV is identified as 

antiretroviral therapy (ART) (as well named highly active 

antiretroviral therapy-HAART) and requires the use of a 

combination of various antiretroviral medicines. 

Although it is not possible to completely cure HIV with 

HAART, it is possible to provide longer and healthier 
lives to HIV-infected people by overpowering HIV-1 

replication to undeterminable levels, increasing the CD4 

count and slowing down the progression of the disease 

[2, 4]. 

 

Drugs approved by FDA (Food and Drug 

Administration) to be used in the antiretroviral treatment 

are categorized in different classes according to their 

action mechanism: nucleoside reverse transcriptase 

inhibitors (NRTIs), non-nucleoside reverse transcriptase 

inhibitors (NNRTIs), protease inhibitors (PIs), integrase 
inhibitors, fusion inhibitors, chemokine receptor 5 

(CCR5) inhibitors, attachment inhibitors, post-

attachment inhibitors and pharmacokinetic enhancers [4, 

5-7]. 

 

The requirement for new HIV-1 inhibitors 

acting by different mechanisms revealed new compounds 

including indole glyoxamide scaffold as small molecules 

[8]. One and the most promising of these indole based 

compounds is BMS-378806 (4-Benzoyl-1-[(4-methoxy-

1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-

methylpiperazine) which is first introduced by Wang et 
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al. [9-10]. BMS-378806 is the first model of a series of 

small-molecule HIV-1 inhibitors that facultatively bind 

to the viral protein and successfully prevent the 

attachment of the virus to CD4 receptors [9, 11, 12]. 

BMS-378806 was further systematically optimized by 
structural modifications to give improved derivatives. 

BMS-378806 and its current family members (like BMS-

663068, also known as fostemsavir, which is currently in 

phase III clinical development) are considered as 

promising HIV-1 inhibitors [13-16]. Until now, by 

modifying the piperazine ring, indole/azaindole 

heteroring or benzamide moiety, many researchers made 

an effort to develop and synthesize the novel small 

molecule inhibitors of HIV-1 based on the indole 

glyoxamide derivatives developed by Bristol-Myers 

Squib [17-22]. On the other hand, molecular dynamic 

simulation study [23], docking and 3D-QSAR studies 
[24-25] have also been performed to predict the binding 

mode of BMS-related ligands for HIV-1 gp120 entry 

inhibitors. Several compounds reported by Meanwell and 

his coworkers [8, 13, 26] have been used by other 

researchers for the aim of docking [27] or 3D-QSAR 

analysis [18]. Data of indole glyoxamide derivatives 

given by ref [26] and also used in the current study, have 

been analyzed by Nirouei et al. to develop linear and 

nonlinear QSAR models with multiple linear regression, 

genetic algorithms and artificial neural networks [28] and 

by Lu et al. for ligand-based 3D QSAR study by CoMFA 
and CoMSIA methods [29]. However, there is no 4D 

QSAR study of related compounds in the literature. 

 

The ultimate goal of computer-aided drug 

design or rational drug discovery is to establish a possible 

linear/nonlinear mathematical relationship between 

molecular features determined from the chemical 

structure of the drug and the biological activity [30]. 

During the drug design process, specifying the features 

dominating the biological activity and identifying the 

pharmacophoric components of the drug interacting with 

the protein is pretty important. 
 

Three-dimensional quantitative structure-

activity relationship (3D QSAR) methods correlate the 

biological activity of a compound with calculated 

descriptors produced from the spatial arrangement of the 

chemical structure, based on a single conformer of a 

ligand. 3D QSAR techniques, like CoMFA and 

CoMSIA, have been commonly applied to premediate 

the biologically active new compounds [31-34]. The 

detection of the bioactive conformers is a significant step 

affecting the reliability of 3D QSAR methods. It may be 
easy to determine bioactive conformation for small or 

rigid molecules in which there are no or only a couple of 

rotatable bonds. However, it is a handicap for bulky and 

non-rigid molecules including the notable number of 

single bonds. In some cases, the representation of a 

molecule by a single conformation, which is chosen 

incorrectly, may result in less reliable models with 

weakened interpretability. Because parameters used in 

the model development are sensitive to the 

conformational changes of the compound. Efforts to 
overcome difficulties in studying with large data sets and 

drawbacks in considering only one conformer of a 

compound in 3D QSAR led up to the emergence of 4D 

QSAR [35, 36]. Different from the 3D QSAR methods, 

conformational flexibility of a ligand is taken into 

consideration in 4 D the QSAR methodology instead of a 

single conformation of a ligand. Incorporating the 

conformational space of a ligand as an ensemble in the 

QSAR model enhances the predictive power and 

interpretability of the model. 

 

The current study aims to uncover the 
pharmacophoric features and predict the inhibitory 

activity of HIV-1 attachment inhibitors in the class of 

indole glyoxamide derivatives [26] using the hybrid 4D 

QSAR electron conformational-genetic algorithm (EC-

GA) methodology. This approach involved in the scope 

of 4D QSAR allows the utilization of the conformational 

ensemble profile for each compound in the data set for 

both pharmacophore detection and bioactivity prediction 

[37]. In the previous studies performed by our research 

group, the EC-GA method was successfully applied to a 

wide variety of data sets and a comprehensive 
explanation of the methodology is presented in the 

literature [37-45].  

 

In the present paper, by using the EC-GA 

method, we focused on the identification of the 

pharmacophoric elements of indole glyoxamide based 

HIV-1 inhibitors reported by Meanwell et al [26]. The 

details of the EC-GA method were described earlier in 

detail [37-44]. To control the performance of the EC-GA 

method for pharmacophore identification and the 

bioactivity estimation, we have compared our model with 

the results in the literature for the same data set.  

 

Experimental  

 

The generation of three-dimensional 

pharmacophore models is a highly helpful tool in ligand-

based methods to comprehend the ligand-receptor 

interaction. According to the IUPAC, a pharmacophore 

is defined as “an ensemble of steric and electronic 

features that is necessary to ensure the optimal 

supramolecular interactions with a specific biological 

target structure and to trigger (or to block) its biological 
response” and defined by pharmacophoric features such 

as hydrogen bond donors/acceptors, hydrophobic or 

electronic interaction positions [46-47]. Developed 

pharmacophore models can be governed to improve the 

ligand-receptor interaction of existing drug molecules or 
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design novel and more potent bioactive drug candidates 

[48-49]. 

 

Due to the quite flexible ligand molecules, the 

identification of the pharmacophoric features is an 
intricate process. Ligands owning rotatable atomic 

groups around single bonds convert between different 

conformations. Each of these conformations has the 

probability to interact with the relevant receptor [50]. 

Therefore, a single conformer would not represent the 

real molecule. 

 

The pharmacophore of a series of indole-

glyoxamide derivatives which is responsible for the HIV-

1 binding inhibition was identified by the EC-GA method 

in the scope of ligand-based pharmacophore modeling by 

taking into account the energetically favorable 
conformations for each molecule. The formation of the 

ECSA from the multi-conformation of compounds can 

be considered as a three-step action. The first is the 

demarcation of the conformer space for each compound 

by the conformational analysis performed as an 

independent step. The conformational space of each 

compound was characterized by the ensemble of 

conformations.  The second is the generation of ECMCs 

by the EMRE program. The third stage is the comparison 

of ECMCs to extract the essential features (ECSA) for 
the activity. Throughout the pharmacophore 

identification process, two main stages need special 

attention are the treatment of conformational elasticity of 

each compound and characterization of pharmacophoric 

features. The former stage handles multiple conformers 

for each compound by conformational analysis since the 

global minimum energy conformer is not always equal to 

the biologically active conformer, the second aims to find 

a common feature in all compounds in the data set [51].  

 

Comprehensive details of the used method are 

given in previous studies [37-45]. The chemical 
structures of the indole-glyoxamide derivatives and their 

experimental data were taken from the literature [26] and 

listed in Table-1. The EC50 values in units of nM that are 

given in the literature were converted to M units and then 

to pEC50 (-log EC50) values.

 

 

Table-1: The skeletal structure and HIV pseudotype virus inhibitory activity (in nM) of indole glyoxamide 

derivatives 

N

O

O

N

N

O

R5R4

R3

R2

R1

 
Compound R1 R2 R3 R4 R5 EC50 pEC50 

1 H H H H H 152.97 6.82 

2 F H H H H 2.59 8.59 

3 Cl H H H H 4.3 8.37 

4 Br H H H H 4.5 8.35 

5 NO2 H H H H 149.8 6.82 

6 OCOCH3 H H H H 24857.5 4.60 

7 OH H H H H 20137.4 4.70 

8 OCH3 H H H H 0.52 9.28 

9 OCH2CH3 H H H H 0.45 9.35 

10 H F H H H 838.3 6.08 

11 H Cl H H H 395 6.40 

12 H Br H H H 1090.3 5.96 

13 H CH3 H H H 1548.6 5.81 

14 H OCH3 H H H 21100 4.68 

15 H NO2 H H H 3800 5.42 

16 H CN H H H 120523.1 3.92 

17 H OCOCH3 H H H 952.2 6.02 

18 H H F H H 21.1 7.68 

19 H H Cl H H 208 6.68 

20 H H OCH3 H H 328.8 6.48 

21 H H H F H 7.3 8.14 

22 H H H Cl H 4.4 8.36 

23 H H H Br H 17.4 7.76 

24 H H H CH3 H 89.5 7.05 

25 H H H CH3CH2 H 24.2 7.62 

26 H H H OCH3 H 6.6 8.18 
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27 H H H OCH2CH3 H 0.5 9.30 

28 H H H OC4H9 H 0.14 9.85 

29 H H H CN H 4.9 8.31 

30 F Br F H H 23.1 7.64 

31 H Cl Cl H H 500 6.30 

32 H OCH3 OCH3 H H 46451.2 4.33 

33 H F H Br H 73.1 7.14 

34 F H H F H 0.35 9.46 

35 OCH3 H H OCH3 H 0.23 9.64 

36 OCH3 H H Cl H 0.07 10.15 

37 OCH3 H H Br H 0.13 9.89 

38 OCF3 H H Br H 42.8 7.37 

39 F H H Br H 0.13 9.89 

40 F H H CH3 H 0.56 9.25 

41 F H H OCH3 H 0.06 10.22 

42 F H H OCH2CF3 H 0.71 9.15 

43 F H H CN H 1.9 8.72 

44 Br H H F H 8.2 8.09 

45 F H F H H 0.42 9.38 

46 F F F F H 1.7 8.77 

47 H H H H CH3 265 6.58 

48 H H H H CH3 CH2 1450 5.84 

49 H H H H CH3(CH2)3 2650 5.58 

50 H H H H CH2=CH-CH2 6760 5.17 

51 H H H H PhCH2 13750 4.86 

52 OCH3 H H CN H 0.06 10.22 

 

Conformational analysis and quantum 

chemical calculations of 52 indole glyoxamide 

derivatives were carried out at HF/3-21G level of 

theory in an aqueous medium by using the Spartan 10 

program [52]. Structurally bulky and non-rigid 

molecules exist in diverse conformations depending 
on the number of rotatable single bonds. Existing of a 

compound in different conformers is especially 

important when the compound has pharmacological 

potency that is fulfilled by only a certain spatial 

position of atoms. Among all conformations, high-

energy ones are less populated and less likely to be 

responsible for pharmacological activity [53]. For this 

reason, following the conformational analysis, 

conformations with a large population and lower 

energy than 1.5 kcal/mol were kept according to the 

Boltzmann distribution in order to take into account 

the probable biologically active conformation which 
possibly binds to protein. Remained conformations 

were aligned based on the minimum energy 

conformation providing that superposition of 

corresponding atoms as seen in Fig. 1. The 

superposition of conformers was done according to the 

indole heterocycle, piperazine ring and benzamide 

moiety. 

 

In the EC-GA method, conformations with 

large population for each compound are defined by the 

electron conformational matrices of congruity 
(ECMCs) which are composed of electronic and 

geometrical parameters. Elements of the ECMCs are 

taken by the EMRE software [37-45] from the output 

files of quantum chemical calculations. In the ECMCs, 

diagonal positions of the matrix were occupied by the 

Mulliken charges of the interested atoms. Non-

diagonal elements of the matrix are filled by bond 

orders for bonded atom pairs or interatomic distances 

for non-bonding atom pairs [54-55]. Fig. 2 shows the 

visual depiction of the ECMC of the lowest energy 
conformer of the most potent compound 52 in the data 

set. By this way, an individual ECMC was formed for 

each conformer of each indole glyoxamide derivative 

in the data set. Totally 1510 ECMCs were produced 

by EMRE software to be used in the comparison 

process. 

 

 
 

Fig. 1: Superposition of 10 conformations of the 

compound 52 in the indole glyoxamide 
derivatives. 

 

. 
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Fig. 2: The visual depiction of the lowest energy conformer of the most active compound 5. 

 

In order to reveal pharmacophoric elements 

of indole glyoxamide derivatives, compounds in the 
data set are classified as high activity and low activity 

compounds. By defining the threshold value (pEC50 = 

7.76), compounds whose pEC50 values are greater than 

or equal to 7.76 are classified as compounds with 

lower activity. Other 26 compounds are considered as 

high activity compounds. The conformation with the 

minimum energy of the most potent compound 52 was 

considered as the reference compound and then 

submitted to the comparison procedure which 

produces the electron conformational submatrix of the 

activity (ECSA) in other words the pharmacophore. 

The diagonal and non-diagonal elements of the ECMC 
of the reference compound were analogized with that 

of the ECMCs of the all other conformations within 

the predefined tolerance values.  

 

Analogizing the ECMCs to determine the 

subset of common features matching all active 

compounds but not matching the low activity 

compounds [37-40] produced a range of ECSAs. 

Among all ECSAs, the one which is most likely to be 

the most favorable ECSA was distinguished from 

others based on the two evaluation measures, Pα and 
αα. Both measures are related to the possibility of the 

existence of the pharmacophore. But Pα indicates the 

evidence of pharmacophore presence in compounds 

with only high activity. αα indicates the evidence of 

pharmacophore presence in compounds with both high 

and low activity [56]. These measures are given by the 

following expressions [37, 57]:  

 

Pα= (n1 + 1)/(n1 + n3 + 2)    (1) 

αa= (n1 × n4 − n2 × n3)/(m1 × m2 × m3 × m4) ½  (2) 

 
In the expressions given above, n1 and n2 refer 

to the pharmacophoric feature (ECSA)-inclusive and 

noninclusive high activity compounds, respectively. n3 

and n4 are equivalent of those for the low activity 

compounds. m1 and m2 represent the number of the 

high and low activity compounds, respectively. m3= 

n1+n3; m4=n2+n4 [54]. 

 

In the context of 4D QSAR studies, the 

biological activities of the related data set was 

calculated by the following equation [37, 53]:  
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In this equation, δ is Kronecker delta function 

with two variables. This function is equal to 1 if the 
compound has Pha, otherwise, it is 0. An and Al, refer 

to the activities of the nth compound and the reference 

compound, respectively. Eli is the relative energy of 

the ith conformation of the reference compound (in 

kcal mol−1) while Eni is the relative energy of the ith 

conformation of the nth compound (in kcal mol−1). k 

(kcal mol−1 K−1) refers to the gas constant [37]. Also, 

the effect of the out-of-Pha groups, named Auxiliary 

groups (AG) and the anti-Pha shielding (APS), were 

explored by the function S which is exponentially 

related to the activity [53] and given by equation 4: 
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
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Here, N is the number of selected descriptors. The 

constant κj is the relative weight of the relevant 

descriptor to the activity. ani
(j) corresponds to the jth 

kind of property of the ith conformation of the nth 
compound [37].  In this way, it is possible to explore 

other factors influencing the activity apart from the 

Pha. Because compounds with identical Pha produce 

unlike activities. The conformational ensemble for 

each compound was taken into account in the Equation 

3 in the extension of the 4D QSAR concept. 

 

Using Equation 3 to estimate the quantitative 

activities of compounds, κj value of each parameter 

was optimized based on the non-linear least square 

function in the Matlab statistics toolbox [58-59]. This 

function tries to fit the data with the minimum 
difference between the calculated and the 

experimental activity values.  

 

In an attempt to reveal the properties which, 

differentiate activities of compounds with identical 

Pha, first large size of parameter pool for each 

conformer of each compound was formed by the 

EMRE software [37-45] and then the most important 

parameters for the biological activity were determined 

by the GA optimization [60], probabilistic 

optimization technique, by discarding the unnecessary 
parameters. The use of GA in the calculation of the 

activity (Equation 3) yielded multiple subsets of 

parameters based on random selection (GA parameters 

used in the optimization; generation number: 150; 

population size: 100; the number of iteration: 150; 

crossover fraction: 80%; mutation rate: 1.5%). All 

potential subsets of parameters were assessed by a 

fitness function to decide the best one. Among the 

potential subsets of descriptors, the optimum subset 

which gives the best model was evaluated according 

to the following fitness function named the predictive 

residual sum of squares (PRESS) (Equation 5), and the 
fitness value of the potential subsets were determined 

by the leave-one-out cross-validation (LOO-CV) 

technique: 

 
2

exp

1

N
pred

N n n

n

PRESS A A


    (5) 

 

Here,  𝐴𝑛
𝑒𝑥𝑝

 and 𝐴𝑛
𝑝𝑟𝑒𝑑

 refer to the experimental and 
the predicted activities of the nth molecule, 

respectively, in the LOO-CV. N refers to the number 

of training molecules. 

 

In EC-GA method, using the LOO-CV 

method, the effectiveness of the obtained models 

based on the potential subsets of descriptors were 

affirmed internally with training compounds and 

externally with test compounds. In the LOO-CV 
method, each compound was left out once. The 

biological activity of this compound was estimated by 

the other compounds in the training set and this 

procedure was repeated for each compound in the 

training set. Although internal validation gives 

information about model performance, it is 

insufficient to make exact estimations for unknown 

compounds not included in the development of the 

QSAR model. Therefore, external validation is 

indispensable to acquire the model with high 

predictive power [61]. Compounds apart from the 

training set, not included in the model development 
were employed to accomplish the external validation. 

In this study, to obtain the best QSAR model with high 

predictive power and statistically robust, not cross-

validated correlation coefficient (q2) but also external 

validation measures, q2
ext1 and q2

ext2, proposed by 

Schuurmann et al. [61-62] were used. The final EC-

GA model was revealed as a function of these 

parameters according to the statistical parameters R2, 

q2, q2
ext1 and q2

ext2. Thus, the optimum EC-GA model 

was identified to predict the activity values of a series 

of indole-glyoxamide derivatives. 
 

Results and Discussion 

 

The pharmacophoric elements of some 

indole-glyoxamide derivatives as HIV-1 attachment 

inhibitors were revealed by the EC-GA method based 

on conformational ensemble for each compound in the 

data set. The structural scaffold of the indole-

glyoxamide derivatives and substituents were given in 

Table 1. During the pharmacophore exploration to 

incorporate the conformational flexibleness, a set of 

conformations for each ligand is employed. 
Otherwise, it is possible to fail in identifying flexibility 

limits of ligands. Depending on the rigidity of the 

molecules, the entire conformational space of the 

related compound series was represented by totally 

1510 conformers. Each conformation was represented 

by the individual ECMC formed by the EMRE 

program. 

 

After the formation of ECMCs, a specified 

cut-off value (pEC50 = 7.76) separated compounds as 

high and low activity compounds. So, 26 compounds 
possessing activity values below 7.76 were marked as 

low activity compounds whereas the remaining 26 

were high activity. Then, the reference compound, the 

global energy minimum conformer of the compound 

52 with the minimum EC50 concentration (as the most 
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efficacious) was designated. As mentioned in the 

Material and Method section and related literature [37-

45], by superposing the set of high and low activity 

compounds, and comparing them with the reference 

ECMC until the limit of tolerance values, common 
chemical features for all ligand molecules, defined as 

ECSA, are extracted from the entire ECMCs. The 

attained tolerance values allow the fittest partition of 

the active and low active compounds. The possible 

pharmacophore candidates are scored by the Pα and αα, 

and the top-scoring ECSA is assigned as the best 

pharmacophore. Accordingly, a set of nine atoms 

comprised of the N1, C9, O1, C10, O2, N2, N3, C15, 

and O3 with the highest score of Pα and αα was stated 

as the optimal ECSA for the indole-glyoxamide 

derivatives interested and given in Table 2. Extracted 

ECSA with the lowest tolerances was found out to be 
necessary features for the HIV-1 attachment. In Table 

2, the submatrix of the pharmacophoric elements of 

indole-glyoxamide derivatives and the tolerance 

values of the high and low activity compounds are 

shown. As an illustration, pharmacophore atoms are 

displayed with white color on the reference compound 

in this table. The first (a) of the four submatrices in 

Table 2 is the ECSA components of the global energy 

minimum conformer of the reference compound 52. 

The submatrix (b) refers to the tolerance values of 26 

high-activity compounds. The submatrix (c) is the 
tolerance matrix of the 26 low-activity compounds. 

Then tolerance values were set free to explore 

molecular elasticity limits and get the extreme values 

of tolerances of all conformations of all compounds. 

The tolerance matrix of the totally 1510 conformations 

of 52 compounds is shown by the submatrix (d).  The 

general trend in the table is that high activity 

compounds possess lower tolerances compared to low 

activity compounds [63]. The atomic charge of the O1 

atom has a tolerance value of ±0.0031 in high activity 

compounds and ±0.0072 in the low activity 

compounds. We can see a similar case for the charge 
of the N2 atom. Tolerance values of the N2 charge are 

±0.035 and ±0.040 for high and low activity 

compounds, respectively. Analysis of the interatomic 

distance between the N2 and C10 atoms also proves 

this situation.  The distance tolerance of N2-C10 atoms 

is ±0.020 for high-activity compounds and ±0.024 for 

low-activity compounds. 

 

As it is seen in Table 2, the N1, O1, O2, N2, 

N3, and O3 atoms would inclined to match up with 

positive regions of the protein in virtue of their 

negative charges. The positively charged C9, C10 and 

C15 atoms would tend to attract to the negatively 

charged regions of the protein. It is possible that 

interaction between ligand molecule and the active site 

of the protein may occur between the negative regions 
of the ligand molecule and the positive parts of the 

receptor due to the majority of the negatively charged 

pharmacophore atoms. Besides, pharmacophoric key 

elements predominantly comprise the hydrogen bond 

acceptors and donors which play a fundamental role 

because of their robust effect in the interaction of 

ligand and receptor. The N1 atom is one of the key 

pharmacophoric features for indole glyoxamide 

derivatives and was found to be responsible for the 

HIV-1 inhibition by the EC-GA method. Inside of the 

ECSA atoms, the negatively charged N1 atom in the 

rigid indole heterocyclic unit act as hydrogen bond 
donor for the binding of the ligand molecule to the 

active site. According to the reported data in the 

literature by Meanwell et al. [26], the attachment of 

small substituents at N1-position of indole ring 

weakens the inhibitory potency depending on the size 

of the alkyl group. Bulkier alkyl moiety and rigid 

phenyl ring diminish increasingly the inhibitory 

activity. This situation can be explained by the steric 

hindrance of the attached substituent to the N1-

position which appears to influence the spatial 

orientation of the ligand and block the hydrogen 
bonding or other non-covalent interactions. The O1 

and O2 atoms in the glyoxal unit, the O3 atom in the 

benzylic carbonyl group, the N2 and N3 atoms in the 

piperazine ring are identified as hydrogen bond 

acceptor to be responsible for the other hydrophilic 

interactions.  

 

The lipophilic ligand-protein interactions are 

likely to be governed by the C9, C10 and C15 atoms. 

We can conclude that most of the interactions with the 

target protein for the indole glyoxamide derivatives 

are type of non-covalent. Both lipophilic and hydrogen 
bonding interactions are crucial for the specific 

binding in biological recognition by the target protein. 

 

Also, the N2 and N3 atoms in the piperazine 

ring are significant components for the HIV-1 binding 

inhibition, by functioning as a site to emplace the 

glyoxal and heterocyclic indole units to the binding 

pocket in a complementary way [8]. 
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Table-2: (a) ECSA (Pha) of reference compound 52 (b) Tolerance matrix for 26 high activity compounds, (c) 

Tolerance matrix for 26 low activity compounds, (d) Tolerance matrix for 1510 conformations of 52 

compounds. 

 
(a) ESCA (Pha) of the reference compound 

N1 C9 O1 C10 O2 N2 N3 C15 O3  

-0.982 3.662 4.217 4.763 4.821 6.088 8.485 9.742 10.515 N1 

 0.438 1.818 0.797 2.399 2.565 5.180 6.285 7.040 C9 

  -0.537 2.391 3.388 2.944 5.493 6.399 7.193 O1 

   0.835 1.744 0.911 4.138 5.287 5.884 C10 

    -0.605 2.279 4.716 5.900 6.318 O2 

     -0.818 2.937 3.939 4.540 N2 

      -0.783 0.901 2.296 N3 

       0.828 1.809 C15 

        -0.589 O3 

(b) Tolerance values for 26 compounds with high activity compounds 

N1 C9 O1 C10 O2 N2 N3 C15 O3  

±0.034 ±0.026 ±0.413 ±0.442 ±0.514 ±0.153 ±1.335 ±1.428 ±1.917 N1 

 ±0.057 ±0.070 ±0.023 ±0.123 ±0.026 ±0.399 ±0.348 ±0.641 C9 

  ±0.031 ±0.035 ±0.233 ±0.352 ±0.713 ±0.676 ±0.790 O1 

   ±0.047 ±0.028 ±0.020 ±0.190 ±0.442 ±0.525 C10 

    ±0.013 ±0.017 ±0.325 ±0.519 ±0.913 O2 

     ±0.035 ±0.065 ±0.397 ±0.495 N2 

      ±0.017 ±0.012 ±0.007 N3 

       ±0.008 ±0.010 C15 

        ±0.006 O3 

(c) Tolerance values for 26 compounds with low activity compounds 

N1 C9 O1 C10 O2 N2 N3 C15 O3  

±0.035 ±0.024 ±0.428 ±0.483 ±0.705 ±1.181 ±2.954 ±3.667 ±4.304 N1 

 ±0.070 ±0.139 ±0.035 ±0.015 ±0.022 ±0.423 ±0.371 ±0.602 C9 

  ±0.072 ±0.022 ±0.280 ±0.358 ±0.583 ±0.724 ±0.844 O1 

   ±0.048 ±0.028 ±0.024 ±0.209 ±0.442 ±0.524 C10 

    ±0.019 ±0.018 ±0.291 ±0.518 ±0.914 O2 

     ±0.040 ±0.064 ±0.394 ±0.493 N2 

      ±0.016 ±0.011 ±0.004 N3 

       ±0.008 ±0.011 C15 

        ±0.010 O3 

(d) Tolerance values for 1510 conformations of 52 compounds 

N1 C9 O1 C10 O2 N2 N3 C15 O3  

±1.264 ±0.053 ±0.436 ±0.483 ±0.811 ±1.304 ±3.561 ±4.800 ±6.268 N1 

 ±0.077 ±0.144 ±0.060 ±0.017 ±0.028 ±0.546 ±0.653 ±1.366 C9 

  ±0.232 ±0.041 ±0.332 ±0.398 ±0.713 ±0.857 ±1.050 O1 

   ±0.624 ±0.084 ±0.150 ±0.345 ±0.443 ±0.615 C10 

    ±0.261 ±0.025 ±0.343 ±0.524 ±0.918 O2 

     ±0.760 ±0.093 ±0.404 ±0.499 N2 

      ±0.721 ±0.144 ±0.018 N3 

       ±0.522 ±0.116 C15 

        ±0.243 O3 
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Extracted pharmacophoric features for the 

gp120-CD4 binding inhibition of indole glyoxamide 

derivatives by the EC-GA method are compatible with 

similar studies available in the literature [18, 25, 26]. The 

final pharmacophore model obtained by the EC-GA 
method would play an essential role in the optimization 

and discovery of novel lead HIV-1 binding inhibitors. It 

is possible to find out more potent new lead indole 

glyoxamide derivatives with different pharmacological 

features. EC-GA method is capable of handling ligand 

flexibility and bioactive conformation handicap. 

 

As the second part of the 4D QSAR EC-GA 

modelling to produce the estimated inhibitory activities, 

the data of indole glyoxamide derivatives was randomly 

partitioned into the training set to model construction and 

the test set to model validation. In this step, by including 
the conformational ensemble profiles of each compound, 

different models were constructed based on the different 

sizes of the training and test sets to compare with the 

literature. Variable selection was performed with the GA 

in Matlab to keep the less significant variables out and to 

hold the most effective ones representing the best model. 

The relative weights of the parameters (Equation 4), κj, 

were adjusted using Equation 5. Then calculated κj values 

were used in the prediction of inhibitory activities of the 

related data set. By multiple GA runs, various variable 

subsets were obtained and scored regarding the fitness 
function. The one with the best score was accepted as the 

optimum subset. However, the optimal number of 

parameters in the subset is uncertain. We tried to obtain 

the best and the most predictive model with the minimum 

number of descriptors. First, training and test sets were 

randomly generated. By using the generated training and 

test sets as fixed, we examined the parameter numbers to 

determine the optimal number of parameters.  

 

In this study, we generated different models to 

define the most reliable and powerful 4D-QSAR model 

for indole glyoxamide derivatives by the EC-GA method 
and to measure the model performance compared to other 

QSAR techniques in the literature. Although a QSAR 

model with high enough internal prediction capacity, it 

does not make certain the same external prediction 

power. In order to prove the model performance of the 

EC-GA method and develop a better model with high 

predictivity, we developed three models given by Model 

1- 3. In Model 1, we adopted the model reported by Lu et 

al.[29], based on 41 training and 11 test compounds. To 

be able to make a comparison, the same compounds 

given by Lu et al. [29] were selected for training and test 
sets. Results of the GA runs for Model 1 were plotted in 

Fig. 3 as the number of parameters vs. statistical 

regression parameters. In Fig 2, it is seen that statistical 

regression coefficients approach 1 by increasing the 

number of parameters. But saturation point is reached 

with 8 parameters. For this model, using parameters more 

than 8 would not influence the model performance much. 

As a general rule, the ratio between the number of 

compounds and the selected parameter is 5:1 [64]. Model 

2 was generated by the use of the same size of training 
and test sets in Model 2, but with randomly selected 

compounds. By changing the size of training and test data 

(35 training and 17 test compounds), we obtained Model 

3 with randomly selected compounds.  Fig.2 and 3 

represent the correlation between the number of 

parameters and some of the statistical regression 

coefficients. According to the. 2 and 3, the optimum 

numbers of parameters for Model 2 and 3 are 8 and 7, 

respectively 

 

 
 

Fig. 3: Correlation between the number of parameters 
and the statistical regression coefficients for 

Model 1. 

 

 
 

Fig. 4: Correlation between the number of parameters 

and the statistical regression coefficients for 

Model 2. 
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Fig. 5: Correlation between the number of 

parameters and the statistical regression 

coefficients for Model 3. 

 
A comparison of models obtained by the EC-

GA method with other models published in the 

literature was presented in Table 3. From Table 3, we 

can see that all of the EC-GA models give satisfactory 

statistical results both internally and externally in 

general. Considering Model 1 based on the same 

training and test compounds as reported by Lu et al 

[29], the EC-GA method gives better results than 

CoMFA and CoMSIA methods. The EC-GA method 

has the higher cross-validated correlation coefficient 

(q2) and non-cross-validated correlation coefficients 
(R2) for the test set than Ref. 29. In Model 2, randomly 

chosen 41 training compounds and 11 test compounds 

were used. If R2 > 0.7 and q2> 0.6 for a QSAR model, 

this model is accepted as robust. q2
ext1 and q2

ext1 

determine the capability of a model to make good 

external estimations (q2
ext1 and q2

ext1 >0.6) [65]. Since 

the model fulfills both the internal and external 

validation requirements described in the literature, 

Model 2 is robust, capable of making good external 

predictions, and has high prediction power. Model 3 

also has relatively high R2, q2, q2
ext1 and q2

ext1 values 

indicating the high prediction performance. From 
Table 3, all EC-GA models have satisfactory internal 

and external validation results. Although CoMFA and 

CoMSIA models have high R2 values, it does not 

indicate the high external prediction. Compared to EC-

GA models, they have lower q2 values. In Table 3, the 

results of the study by Nirouei et al were given for 
comparison. In their study, they developed linear and 

non-linear QSAR models of 40 indole glyoxamide 

derivatives by using different combinations of 

multiple linear regression (MLR), genetic algorithms 

(GA) and artificial neural networks (ANN). But in the 

mentioned study which uses the same indole 

glyoxamide derivatives, the number of compounds is 

different from the present study. Due to the different 

sizes of the entire data, this situation does not allow a 

proper comparison between the methods. However, it 

can be concluded that EC-GA models are better than 

models in Ref. 28. Among the EC-GA model, even 
though q2

ext1 and q2
ext1 values are higher the than other 

two models, it has relatively low R2 and q2 values. 

Because of this reason, we can conclude that Model 2 

represents better predictivity than the others. It can be 

effectively employed in the development of novel 

indole glyoxamide derivatives as HIV-1 attachment 

inhibitors.  

 

The predicted and experimental activity 

values of compounds are listed in Table 4. Training 

and test compounds in Table 4 were randomly chosen 
from the complete data. Test compounds were 

indicated with a “t”. As seen in the table, the residual 

value between the experimental and the predicted 

activity values are lower than 1 in general. This 

situation proves that the model has reliability and high 

prediction ability. The correlation between the 

experimental and the predicted activities of 

compounds was plotted in Fig. 6 for Model 2. 

Considering the results for Model 2, the optimum EC-

GA model was achieved as a function of 8 parameters 

and had the following statistical results: R2
training=, 

R2
test =0.8, cross-validated q2 =0.860, q2

ext1 = 0.850 and 
q2

ext1 = 0.850. Accordingly, the final model 

overcompensates all statistical threshold values in the 

literature by the use of conformational ensembles for 

each compound. 

 

 

Table-3: Comparison of model performance. 
Reference-Method Training/Test size q2 R2

training R2
test q2

ext1 q2
ext2 

Ref. 29- CoMFA  41/11 0.589 0.963 0.875 NA NA 

Ref. 29-CoMSIA 41/11 0.621 0.972 0.960 NA NA 

Ref. 28-MLR-MLR 32/8 NA 0.85 0.55 NA NA 

Ref. 28-MLR-ANN 32/8 NA 0.95 0.58 NA NA 

Ref. 28-GA-ANN 32/8 NA 0.96 0.75 NA NA 

Model 1 (EC-GA) 41/11 0.753 0.853 0.930 0.921 0.920 

Model 2 (EC-GA) 41/11 0.860 0.900 0.860 0.850 0.850 

Model 3 (EC-GA)  35/17 0.761 0.855 0.903 0.823 0.822 
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Table-4: Experimental and predicted activity values of 52 indole glyoxamide derivatives for Model 2. 
Compound Experimental pEC50 Predicted pEC50 Compound Experimental pEC50 Predicted pEC50 

1  6.815 6.957 27 t 9.301 8.521 

2 8.587 8.472 28 9.854 10.093 

3 8.366 8.296 29 t 8.310 8.512 

4 8.347 7.972 30 7.636 9.301 

5 6.824 6.930 31 6.301 6.997 

6 t 4.604 5.439 32 4.333 4.149 

7 4.696 4.902 33 7.136 7.011 

8 9.284 9.128 34 9.456 9.158 

9 9.347 8.670 35 9.638 10.774 

10 6.077 6.181 36 10.155 10.082 

11 6.403 6.800 37 t 9.886 10.487 

12 t 5.962 7.121 38 7.369 6.887 

13 t 5.810 4.829 39 9.886 9.090 

14 t 4.676 3.921 40 t 9.252 9.992 

15 5.420 5.364 41 10.222 10.530 

16 3.919 4.020 42 t 9.148 9.602 

17 6.021 6.406 43 8.721 9.407 

18 7.676 6.904 44 8.086 8.795 

19 6.682 6.819 45 t 9.377 9.034 

20 6.483 6.292 46 8.769 8.1945 

21 8.137 7.123 47 t 6.577 6.4023 

22 8.356 7.321 48 5.838 5.932 

23 7.760 7.388 49 5.577 5.350 

24 7.048 6.994 50 5.170 5.787 

25 7.616 7.026 51 4.862 4.922 

26 8.180 7.876 52 10.222 10.222 
t Test set 

 

Table-5: Definition of the optimal parameters for Model 2. 
ani

(j) Molecular Parameters 

a(1) Orthogonal distance of H9 atom to O2-C10-C9 plane (Å) 

a(2) Orthogonal distance of H2 atom to O1-N2-N3 plane (Å) 

a(3) Orthogonal distance of N1 atom to O2-C10-N2 plane+ Van der Waals radius (Å) 

 a(4)  Orthogonal distance of  the nearest atom to O2-N2-N3 plane +Van der Waals radius (Å) 

a(5) Orthogonal distance of  the farthest atom to O2-N2-N3 plane + Van der Waals radius (Å) 

a(6) Bond order of N1-H9 bond 

a(7) Mulliken charge of the C2 atom 

a(8)  Interatomic distance between C4-N2 atoms (Å) 

 

 
 

Fig. 6: Correlation between the experimental and the 

predicted activities for training and test data 

in Model 2. 

 

The final model is constructed based on the 8 

parameters which are the most significant for 

bioactivity. These parameters are given in Table 5. 

Selected parameters giving the best model with high 

statistical results are generally composed of 

geometrical and electronic parameters. The most 

influential parameters include especially 

pharmacophoric atoms which are responsible for the 

activity. The predominance of geometrical parameters 
shows that spatial orientations of atoms leading to 

conformations are of vital importance for the 

interaction between the drug molecules and 

bioreceptor. 

 

Conclusion 

 

In the current study, key pharmacophoric 

units of the 52 indole glyoxamide derivatives were 

revealed and the inhibitory activities were calculated 

by EC-GA method to gain insight about the ligand 
binding to the gp120 glycoprotein. Conformational 

ensembles were utilized to take into consideration the 

flexibility of ligands during the ligand-protein 

interaction. As well as docking studies are available 

for the different indole glyoxamide or azaindole 

glyoxamide derivative, only a few QSAR study was 

reported on the same data set examined in this paper. 

Because there is not a reported 4D QSAR study on 

indole glyoxamide derivatives in the literature, the 

current 4D QSAR study is original. 
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The pharmacophore elements were identified 

as a set of nine atoms proving that hydrogen bond 

donor and acceptors sites are the most favorable 

elements for the activity of inhibition and molecular 

recognition. The nitrogen atom placed in the indole 
ring is capable of making hydrogen bonds as a donor. 

Substituents at N1-position would prevent the 

formation of hydrogen bonds towards the H-bond 

acceptor site of the CD4 protein. Three carbonyl H-

bond acceptors and two nitrogens in the piperazine are 

the other master key components of the hydrophilic 

interactions due to their relatively flexible positions 

orienting towards their complemental matches in the 

protein surface. When comparing the identified 

pharmacophoric features with the results in the 

literature, it is clearly seen that EC-GA method 

successfully determines the activity features for the 
HIV-1 attachment inhibition and produces compatible 

results with the similar studies in the literature [18,25-

27]. Different 4D QSAR EC-GA models for indole 

glyoxamide derivatives were set up to compare the 

outcomes of other methods in the literature. All of the 

models were submitted to internal and external 

validation procedure. The final model was constructed 

with 8 parameters which give the optimal values for 

statistical parameters. This model disclose the 

importance of the utilization of multiple conformers 

for each compound. The optimum EC-GA model 
(Model 2) was found as a function of 8 parameters and 

had the following statistical values: R2
training=, R2

test 

=0.860, q2 =0.860, q2
ext1 = 0.850 and q2

ext1 = 0.850. 

Accordingly, the best 4D QSAR model show high 

prediction power and robustness, which can be 

employed in the future design of new indole 

glyoxamide compounds. Attained pharmacophore and 

QSAR model provides insight into the vital interaction 

between HIV-1 binding inhibitory ligands and CD4 

cell and can be effectively used for the design and 

development of the novel HIV-1 attachment inhibitor 

agents. This study will be the basis for the future 4D-
QSAR model development study for indole 

glyoxamide derivatives with desirably increased 

potency. 
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